Regulation of compatible solute accumulation in bacteria.

نویسندگان

  • B Poolman
  • E Glaasker
چکیده

In their natural habitats, microorganisms are often exposed to osmolality changes in the environment. The osmotic stress must be sensed and converted into an activity change of specific enzymes and transport proteins and/or it must trigger their synthesis such that the osmotic imbalance can be rapidly restored. On the basis of the available literature, we conclude that representative gram-negative and gram-positive bacteria use different strategies to respond to osmotic stress. The main focus of this paper is on the initial response of bacteria to hyper- and hypo-osmotic conditions, and in particular the osmosensing devices that allow the cell to rapidly activate and/or to synthesize the transport systems necessary for uptake and excretion of compatible solutes. The experimental data allow us to discriminate the transport systems by the physicochemical parameter that is sensed, which can be a change in external osmotic pressure, turgor pressure, membrane strain, internal osmolality and/or concentration of specific signal molecule. We also evaluate the molecular basis for osmosensing by reviewing the unique structural features of known osmoregulated transport systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of salt stress on ion accumulation, photosynthesis and compatible solute contents in four grapevine (Vitis vinifera) genotypes

Salinity tolerance of four grape genotypes [GharaUzum, Hosseini, AghUzum and Keshmeshi] was studied under various salinity levels (25, 50 and 100 mM NaCl). As a result, growth indices were significantly (P<0.05) reduced by salinity, whereas Cl- and Na+ contents in the plant parts were increased. Cl- accumulation exceeded than that of Na+ in all treatments. Among the genotypes studied, GharaUzum...

متن کامل

Introducing ectoine as compatible solute: biosynthetic pathway, production and applications

Halophilic microorganisms cope with environmental stresses by producing and accumulating compatible solutes. Ectoine is one of the most important members of compatible solutes which have extra protective properties compared to other compatible solutes. Ectoine attracts several scientific and commercial attention because of their multiple industrial applications. This brief review presents appli...

متن کامل

Effect of compatible solutes on survival of lactic Acid bacteria subjected to drying.

Four strains of lactic acid bacteria were investigated to determine if a relationship exists between accumulation of compatible solutes and the ability of cells to survive drying. Betaine was the major solute found in these lactic acid bacteria subjected to salt stress. Survival of cultures subjected to drying was considerably enhanced when this solute was accumulated by cells.

متن کامل

Diversity and biosynthesis of compatible solutes in hyper/thermophiles.

The accumulation of compatible solutes, either by uptake from the medium or by de novo synthesis, is a general response of microorganisms to osmotic stress. The diversity of compatible solutes is large but falls into a few major chemical categories, such as carbohydrates or their derivatives and amino acids or their derivatives. This review deals with compatible solutes found in thermophilic or...

متن کامل

Identification of Trans-4-Hydroxy-L-Proline as a Compatible Solute and Its Biosynthesis and Molecular Characterization in Halobacillus halophilus

Halobacillus halophilus, a moderately halophilic bacterium, accumulates a variety of compatible solutes including glycine betaine, glutamate, glutamine, proline, and ectoine to cope with osmotic stress. Non-targeted analysis of intracellular organic compounds using 1H-NMR showed that a large amount of trans-4-hydroxy-L-proline (Hyp), which has not been reported as a compatible solute in H. halo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular microbiology

دوره 29 2  شماره 

صفحات  -

تاریخ انتشار 1998